3 research outputs found

    Improving the predictability of take-off times with Machine Learning : a case study for the Maastricht upper area control centre area of responsibility

    Get PDF
    The uncertainty of the take-off time is a major contribution to the loss of trajectory predictability. At present, the Estimated Take-Off Time (ETOT) for each individual flight is extracted from the Enhanced Traffic Flow Management System (ETFMS) messages, which are sent each time there is an event triggering a recalculation of the flight data by the Network Man- ager Operations Centre. However, aircraft do not always take- off at the ETOTs reported by the ETFMS due to several factors, including congestion and bad weather conditions at the departure airport, reactionary delays and air traffic flow management slot improvements. This paper presents two machine learning models that take into account several of these factors to improve the take- off time prediction of individual flights one hour before their estimated off-block time. Predictions performed by the model trained on three years of historical flight and weather data show a reduction on the take-off time prediction error of about 30% as compared to the ETOTs reported by the ETFMS.Peer ReviewedPostprint (published version

    Improving the predictability of take-off times with Machine Learning : a case study for the Maastricht upper area control centre area of responsibility

    No full text
    The uncertainty of the take-off time is a major contribution to the loss of trajectory predictability. At present, the Estimated Take-Off Time (ETOT) for each individual flight is extracted from the Enhanced Traffic Flow Management System (ETFMS) messages, which are sent each time there is an event triggering a recalculation of the flight data by the Network Man- ager Operations Centre. However, aircraft do not always take- off at the ETOTs reported by the ETFMS due to several factors, including congestion and bad weather conditions at the departure airport, reactionary delays and air traffic flow management slot improvements. This paper presents two machine learning models that take into account several of these factors to improve the take- off time prediction of individual flights one hour before their estimated off-block time. Predictions performed by the model trained on three years of historical flight and weather data show a reduction on the take-off time prediction error of about 30% as compared to the ETOTs reported by the ETFMS. Peer Reviewe

    Improving the predictability of take-off times with Machine Learning : a case study for the Maastricht upper area control centre area of responsibility

    No full text
    The uncertainty of the take-off time is a major contribution to the loss of trajectory predictability. At present, the Estimated Take-Off Time (ETOT) for each individual flight is extracted from the Enhanced Traffic Flow Management System (ETFMS) messages, which are sent each time there is an event triggering a recalculation of the flight data by the Network Man- ager Operations Centre. However, aircraft do not always take- off at the ETOTs reported by the ETFMS due to several factors, including congestion and bad weather conditions at the departure airport, reactionary delays and air traffic flow management slot improvements. This paper presents two machine learning models that take into account several of these factors to improve the take- off time prediction of individual flights one hour before their estimated off-block time. Predictions performed by the model trained on three years of historical flight and weather data show a reduction on the take-off time prediction error of about 30% as compared to the ETOTs reported by the ETFMS.Peer Reviewe
    corecore